サポートベクターマシン入門 [単行本]
    • サポートベクターマシン入門 [単行本]

    • ¥4,620139 ゴールドポイント(3%還元)
    • 在庫あり2026年2月26日木曜日までヨドバシエクストリームサービス便(無料)がお届け
100000009000330299

サポートベクターマシン入門 [単行本]

価格:¥4,620(税込)
ゴールドポイント:139 ゴールドポイント(3%還元)(¥139相当)
お届け日:在庫あり今すぐのご注文で、2026年2月26日木曜日までヨドバシエクストリームサービス便(無料)がお届けします。届け先変更]詳しくはこちら
出版社:共立出版
販売開始日: 2011/11/08
お取り扱い: のお取り扱い商品です。

カテゴリランキング

店舗受け取りが可能です
マルチメディアAkibaマルチメディア梅田マルチメディア博多にて24時間営業時間外でもお受け取りいただけるようになりました

サポートベクターマシン入門 [単行本] の 商品概要

  • 目次

    第1章 学習法
    1.1 教師あり学習
    1.2 学習と汎化
    1.3 汎化能力の向上
    1.4 学習の長所短所
    1.5 サポートベクターマシンでの学習
    1.6 練習
    1.7 さらなる文献と話題

    第2章 線形学習マシン
    2.1 線形クラス分類
     2.1.1 ローゼンブラットのパーセプトロン
    2.1.2 その他の線形クラス分類器
     2.1.3 多クラスのクラス分類器
    2.2 線形回帰
     2.2.1 最小2乗法
     2.2.2 リッジ回帰
    2.3 線形マシンの双対表現
    2.4 練習
    2.5 さらなる文献と話題

    第3章 カーネル誘導特徴空間
    3.1 特徴空間の学習
    3.2 特徴空間への陰写像
    3.3 カーネル作成
     3.3.1 カーネルの特徴
     3.3.2 カーネルからのカーネル構築
     3.3.3 特徴からのカーネル構築
    3.4 特徴空間での作業
    3.5 カーネルとガウス過程
    3.6 練習
    3.7 さらなる文献と話題

    第4章 汎化理論
    4.1 PAC学習
    4.2 VC理論
    4.3 マージンに基づく限界による汎化
     4.3.1 最大マージン限界
     4.3.2 マージンパーセント点限界
     4.3.3 ソフトマージン限界
    4.4 その他の汎化限界「幸運さ限界」
    4.5 回帰での汎化
    4.6 学習のベイズ分析
    4.7 練習
    4.8 さらなる文献と話題

    第5章 最適化の理論
    5.1 問題定式化
    5.2 ラグランジュ理論
    5.3 双対性
    5.4 練習
    5.5 さらなる文献と話題

    第6章 サポートベクターマシン
    6.1 サポートベクトルによるクラス分類
     6.1.1 最大マージンクラス分類器
     6.1.2 ソフトマージン最適化
     6.1.3 線形計画法サポートベクターマシン
    6.2 サポートベクターマシンによる回帰
     6.2.1 ε-インセンシティブな損失回帰
     6.2.2 カーネルリッジ回帰
     6.2.3 ガウス過程
    6.3 議論
    6.4 練習
    6.5 さらなる文献と話題

    第7章 インプリメンテーション技術
    7.1 一般事項
    7.2 素朴な解決:勾配登り
    7.3 一般的技術とソフトウェア
    7.4 チャンク化と行列分解
    7.5 SMO法
     7.5.1 2点の解析的な解
     7.5.2 ヒューリスティックな選択
    7.6 ガウス過程の方法
    7.7 練習
    7.8 さらなる文献と話題

    第8章 サポートベクターマシンの応用事例
    8.1 テキストのカテゴリ化
     8.1.1 情報検索でのカーネルを使った情報フィルタ
    8.2 画像認識
     8.2.1 物体の向きに独立なパターン分類
     8.2.2 色を基準とするクラス分類
    8.3 手書き文字認識
    8.4 バイオインフォマティックス
     8.4.1 タンパク質相同性検知
     8.4.2 遺伝子の表現
    8.5 さらなる文献と話題

    付録A SMOアルゴリズムのコード

    付録B 背景となる数学
    B.1 ベクトル空間
    B.2 内積空間
    B.3 ヒルベルト空間
    B.4 作用素・固有値・固有ベクトル

    文献

    索引
  • 出版社からのコメント

    統計学習理論に基づく新世代学習システムを詳説
  • 内容紹介

    サポートベクターマシン(SVM)とは、統計学習理論に基づく学習システムで、現在の技術水準としての性能を発揮しながら、テキスト分類、手書き文字認識、画像分類、タンパク質配列分析などの現実的な問題へ適用できる。また、現在発展を続けるカーネル法や他の統計学習などの共通のルーツとしての重要性ももつ。これらの意味で、この手法の詳細を理解することは非常に意義深い。本書は、数学的厳密に、最小限の枚数で学べる非常に効果的な書物である。英書のオリジナルは、各方面で絶賛されているもので、日本語版が待ち望まれていた。
    [原著 Nello Cristianini、 John Shawe-Taylor: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods、 Cambridge University Press、 2000]
  • 著者紹介(「BOOK著者紹介情報」より)(本データはこの書籍が刊行された当時に掲載されていたものです)

    クリスティアニーニ,ネロ(クリスティアニーニ,ネロ/Cristianini,Nello)
    イタリアのゴリジアで生まれた。イタリアのトリエステ大学、ロンドン大学ロイヤルハロウェイ校、ブリストル大学、カリフォルニア大学サンタクルーズ校で研究活動をしてきた。サポートベクターマシンの理論応用や他の学習システムに関する活発な若手研究者である。これらの分野において、多くの主要な国際会議や雑誌に研究を発表している

    ショー-テイラー,ジョン(ショーテイラー,ジョン/Shawe-Taylor,John)
    イギリスのチェルテンハムで生まれた。ケンブリッジ大学、スロベニアのリュブリャナ大学、カナダのサイモンフレーザー大学、インペリアル大学、ロンドン大学ロイヤルハロウェイ校で研究活動をしてきた。ロンドン大学ロイヤルハロウェイ校の計算機科学科の教授である。現在、ヨーロッパ基金によるニューラル・計算論的学習に関する16大学協同研究のコーディネーターをしている

    大北 剛(オオキタ ツヨシ)
    1991年、東京大学の理学部情報科学科で学士を得た後、1999年までソニーで並行オブジェクト指向OSや放送局用カメラの設計開発をする。1998年に、ソニーブリュッセルへ赴任する。2001年と2002年に、ブリュッセル自由大学で計算機科学とヨーロッパ統合政治経済の修士を取得する。2005年に同大学で人工知能の博士を取得予定している。一方、2003年より、ベルギーでソフトウェアコンサルタントとして独立する

サポートベクターマシン入門 [単行本] の商品スペック

商品仕様
出版社名:共立出版
著者名:ネロ クリスティアニーニ(著)/ジョン ショウ-テイラー(著)/大北 剛(訳)
発行年月日:2005/03/25
ISBN-10:4320121341
ISBN-13:9784320121348
判型:A5
対象:専門
発行形態:単行本
内容:数学
言語:日本語
ページ数:252ページ
縦:23cm
その他: 原書名: An Introduction to Support Vector Machines:and other kernel-based learning methhods〈Cristianini,Nello;Shawe-Taylor,John〉
他の共立出版の書籍を探す

    共立出版 サポートベクターマシン入門 [単行本] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!