代数的組合せ論入門(共立叢書 現代数学の潮流) [全集叢書]
    • 代数的組合せ論入門(共立叢書 現代数学の潮流) [全集叢書]

    • ¥6,380192 ゴールドポイント(3%還元)
    • 在庫あり2025年7月27日日曜日までヨドバシエクストリームサービス便(無料)がお届け
100000009002603595

代数的組合せ論入門(共立叢書 現代数学の潮流) [全集叢書]

価格:¥6,380(税込)
ゴールドポイント:192 ゴールドポイント(3%還元)(¥192相当)
お届け日:在庫あり今すぐのご注文で、2025年7月27日日曜日までヨドバシエクストリームサービス便(無料)がお届けします。届け先変更]詳しくはこちら
出版社:共立出版
販売開始日: 2016/07/26
お取り扱い: のお取り扱い商品です。
ご確認事項:返品不可

カテゴリランキング

店舗受け取りが可能です
マルチメディアAkibaマルチメディア梅田マルチメディア博多にて24時間営業時間外でもお受け取りいただけるようになりました

代数的組合せ論入門(共立叢書 現代数学の潮流) の 商品概要

  • 目次

    第1章 古典的デザイン理論と古典的符号理論
    1. グラフ理論入門
    2. 強正則グラフとMooreグラフ
    3. 古典的t-デザイン,定義と基本的な性質
    4. デザインの具体例
    5. 古典的符号理論入門
    6. 符号の具体例と存在問題

    第2章 アソシエーションスキーム
    1. アソシエーションスキームの定義
    2. ボーズ・メスナー代数
    3. 可換なアソシエーションスキーム
    4. アソシエーションスキームの指標表
    5. 交叉数行列とボーズ・メスナー代数
    6. 双対ボーズ・メスナー代数とTerwilliger代数
    7. アソシエーションスキームに関する色々な概念
    8. 距離正則グラフとP-多項式スキーム
    9. Q-多項式スキーム
    10. 色々なアソシエーションスキームの指標表
    11. 球面への埋め込み

    第3章 アソシエーションスキーム上の符号とデザイン(アソシエーションスキーム上のDelsarte理論)
    1. 線形計画法を考える
    2. アソシエーションスキームの部分集合
    3. 古典的なデザインとジョンソンスキーム上のデザイン
    4. ハミングスキーム上の符号
    5. ジョンソンスキームにおけるtightなデザイン
    6. ジョンソンスキームやハミングスキームにおける奇数tのtightなt-デザイン

    第4章 アソシエーションスキーム上の符号とデザイン(続き)
    1. Assmus-Mattsonの定理とその拡張(Delsarteの相対デザインを用いる方法)
    2. 正則な半朿におけるt-デザイン

    第5章 球面上の代数的組合せ論と代数的組合せ論についての総論
    1. 球面上の有限集合
    2. 他の空間上の有限集合の研究

    第6章 P-かつQ-多項式スキーム
    1. P-多項式/Q-多項式スキーム再訪
    2. TD-対
    3. L-対
    4. 既知のP-かつQ-多項式スキーム
  • 著者紹介(「BOOK著者紹介情報」より)(本データはこの書籍が刊行された当時に掲載されていたものです)

    坂内 英一(バンナイ エイイチ)
    1970年東京大学大学院理学系研究科修士課程修了。現在、上海交通大学教授、九州大学名誉教授、理学博士(東京大学)。専攻は数学

    坂内 悦子(バンナイ エツコ)
    1988年オハイオ州立大学大学院博士課程修了。現在、元九州大学准教授、Ph.D.(オハイオ州立大学)。専攻は数学

    伊藤 達郎(イトウ タツロウ)
    1974年東京大学大学院理学系研究科数学専攻修士課程修了。現在、安徽大学教授、金沢大学名誉教授、理学博士(東京大学)。専攻は代数的組合せ論
  • 内容紹介

     代数的組合せ論とは,「群無しの群論」と標語的に述べられもするが,「組合せ論的対象の表現論の方向からの研究」,具体的には有限置換群の研究の発展として組合せ論として研究が進められてきた分野であり,また,アソシエーションスキームの枠組みの中でグラフ,デザイン,コードなどを統一的に見る方向でも研究が進められてきた分野である。本書は,代数的組合せ論の理論およびその様々な拡張などをとりあげて解説した入門書かつ専門書である。
     最初に,組合せ論の基本を予備知識なしで概観する。次にグラフ,デザイン,コードなどを統一的に見る概念として重要な,アソシエーションスキームの概念を解説し,その後,アソシエーションスキームの上でのコードおよびデザイン理論(Delsarte理論)の解説とその応用について解説する。また同時に,Terwilliger代数というアソシエーションスキームの研究を深める概念の導入も述べる。その次には,球面上の代数的組合せ論とDelsarte理論の類似を解説し,代数的組合せ論がどのようなことを目標に,またどのように研究されてきた(またされていく)かを解説する。最後に,Terwilliger代数の基本を述べ,それがアソシエーションスキームの研究にどのように役立っているかを,研究の最前線を概観できる形で詳しく解説する。
     特に本書の後半部の内容はオリジナルであり,最新の結果,情報,方法,未解決問題なども数多く含んでいるので,本分野の専門家にとって大変有用なものであろう。また,初心者や非専門家にとっても,本分野全体の概観や,最前線で活躍してきた著者らだからこそ書ける発展の歴史が述べられており,代数的組合せ論の良い道しるべになるであろう。

代数的組合せ論入門(共立叢書 現代数学の潮流) の商品スペック

商品仕様
出版社名:共立出版
著者名:坂内 英一(著)/坂内 悦子(著)/伊藤 達郎(著)
発行年月日:2016/07/25
ISBN-10:4320111478
ISBN-13:9784320111479
判型:A5
対象:専門
発行形態:全集叢書
内容:数学
言語:日本語
ページ数:511ページ
縦:22cm
他の共立出版の書籍を探す

    共立出版 代数的組合せ論入門(共立叢書 現代数学の潮流) [全集叢書] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!