確率偏微分方程式(岩波数学叢書) [全集叢書]

販売休止中です

    • 確率偏微分方程式(岩波数学叢書) [全集叢書]

    • ¥8,140245 ゴールドポイント(3%還元)
100000009003113251

確率偏微分方程式(岩波数学叢書) [全集叢書]

価格:¥8,140(税込)
ゴールドポイント:245 ゴールドポイント(3%還元)(¥245相当)
フォーマット:
日本全国配達料金無料
出版社:岩波書店
販売開始日: 2019/03/16
お取り扱い: のお取り扱い商品です。
ご確認事項:返品不可

カテゴリランキング

確率偏微分方程式(岩波数学叢書) [全集叢書] の 商品概要

  • 要旨(「BOOK」データベースより)

    数学的な基礎づけを与え、統計物理などからくる応用例やフィールズ賞に至った近年の発展にふれる。
  • 目次

    まえがき
    記号表


    1 はじめに――確率偏微分方程式の概観
     1. 1 確率微分方程式
     1. 2 簡単な確率偏微分方程式と自然なノイズ
     1. 3 時空 Gauss 型ホワイトノイズ
     1. 4 周期境界条件つき確率熱方程式
      1. 4. 1 確率熱方程式
      1. 4. 2 高階の確率偏微分方程式
     1. 5 Dirichlet あるいは Neumann 境界条件つき確率熱方程式
      1. 5. 1 超関数解
      1. 5. 2 軟解
      1. 5. 3 超関数解と軟解の同値性
     1. 6 確率熱方程式の解とノイズのランダムさの度合いの関わり
     1. 7 確率偏微分方程式の例
      1. 7. 1 確率反応拡散方程式
      1. 7. 2 確率 Navier Stokes 方程式
      1. 7. 3 揺らぎのある界面成長方程式
      1. 7. 4 弦の揺動方程式
      1. 7. 5 放物型 Anderson 模型
      1. 7. 6 生物学,工学,経済学に関連する確率偏微分方程式
      1. 7. 7 確率偏微分方程式とランダムな偏微分方程式の違い

    2 時空 Gauss 型ホワイトノイズ
     2. 1 Hilbert 空間に値をとるマルチンゲール
     2. 2 ホワイトノイズ過程
      2. 2. 1 柱状 Brown 運動,時空 Gauss 型ホワイトノイズ
      2. 2. 2 Q Brown 運動,色つきノイズ
     2. 3 確率積分
      2. 3. 1 被積分関数が H 値の場合
      2. 3. 2 被積分関数が作用素に値をとる場合
      2. 3. 3 伊藤の公式

    3 半線形確率偏微分方程式
     3. 1 全空間上の確率偏微分方程式
      3. 1. 1 基本解
      3. 1. 2 軟解の存在と一意性
      3. 1. 3 軟解の正則性
      3. 1. 4 超関数解およびマルチンゲール問題
      3. 1. 5 Markov 性
     3. 2 有界領域上の確率偏微分方程式
      3. 2. 1 4階の確率偏微分方程式
      3. 2. 2 非斉次境界値問題
     3. 3 非 Lipschitz 連続な拡散係数をもつ確率熱方程式
     3. 4 不変測度と可逆測度
      3. 4. 1 不変測度の基本的な性質
      3. 4. 2 不変測度の存在と一意性
      3. 4. 3 勾配系の可逆測度
     3. 5 非負解と比較定理

    4 準線形確率偏微分方程式
     4. 1 準線形確率偏微分方程式の例
      4. 1. 1 拡散方程式
      4. 1. 2 表面張力による平均曲率流
     4. 2 関数空間の設定
     4. 3 ノルムに対する伊藤の公式
     4. 4 解の存在と一意性
      4. 4. 1 係数に対する仮定と主定理
      4. 4. 2 Galerkin 近似

    5 確率偏微分方程式の応用
     5. 1 大規模相互作用系の揺動理論と確率偏微分方程式
      5. 1. 1 非線形離散モデル
      5. 1. 2 大数の法則流体力学極限
      5. 1. 3 中心極限定理(平衡揺動)
      5. 1. 4 Boltzmann Gibbs 原理
      5. 1. 5 定理5. 1. 2 の証明
     5. 2 確率 Allen Cahn 方程式に対する鋭敏界面極限
      5. 2. 1 問題の背景
      5. 2. 2 ノイズがない場合の結果の概観
      5. 2. 3 ノイズがある場合の結果の概観
      5. 2. 4 単純なノイズをもつ確率反応拡散方程式の解の存在と一意性
      5. 2. 5 単純なノイズの場合の鋭敏界面極限

    6 特異な確率偏微分方程式
     6. 1 KPZ方程式
     6. 2 確率量子化
     6. 3 正則構造理論
     6. 4 パラコントロール解析理論

    7 付録
     7. 1 連続マルチンゲール
     7. 2 Brown 運動
     7. 3 確率積分
     7. 4 伊藤の公式
     7. 5 不変測度と可逆測度
     7. 6 連続マルチンゲールの表現定理
     7. 7 Girsanov 丸山の定理と確率的 Fubini の定理
     7. 8 確率過程の連続性条件
     7. 9 連続確率過程の法則収束
     7. 10 基本的な不等式


    参考文献
    索 引
  • 出版社からのコメント

    広範に使われるこの手法に数学的基礎を与え,特徴的な応用例やフィールズ賞に至った近年の発展にふれる.
  • 内容紹介

    自然現象の解析から株式市場の予測まで、ランダム項を持つ確率偏微分方程式はきわめて広範囲な場面で使われる。本書は、伊藤の理論の拡張としてその数学的な基礎を与え、さらに応用として微視系の揺動理論や界面現象の記述に現れる方程式について述べる。ハイラーのフィールズ賞受賞理論などの最近の発展にもふれた。
  • 著者紹介(「BOOK著者紹介情報」より)(本データはこの書籍が刊行された当時に掲載されていたものです)

    舟木 直久(フナキ タダヒサ)
    1951年生まれ。1977年東京大学大学院理学系研究科博士課程(数学専攻)退学。1982年理学博士(名古屋大学)。現在、早稲田大学理工学術院特任教授、東京大学名誉教授。専攻:確率論、解析学、数理物理学

    乙部 厳己(オトベ ヨシキ)
    1972年生まれ。2001年東京大学大学院数理科学研究科博士後期課程修了。博士(数理科学)。現在、信州大学学術研究院(理学系)准教授。専攻:確率論、解析学

    謝 賓(シャ ビン)
    1979年生まれ。2008年東京大学大学院数理科学研究科博士後期課程修了。博士(数理科学)。現在、信州大学学術研究院(理学系)准教授。専攻:確率論、解析学
  • 著者について

    舟木 直久 (フナキ タダヒサ)
    舟木直久(ふなき ただひさ)
    1951年生まれ.
    1977年東京大学大学院理学系研究科博士課程(数学専攻)退学.
    1982年理学博士(名古屋大学).
    現在 早稲田大学理工学術院特任教授,東京大学名誉教授.
    専攻 確率論,解析学,数理物理学.

    乙部 厳己 (オトベ ヨシキ)
    乙部厳己(おとべ よしき)
    1972年生まれ.
    2001年東京大学大学院数理科学研究科博士後期課程修了.博士(数理科学).
    現在 信州大学学術研究院(理学系)准教授.
    専攻 確率論,解析学.

    謝賓 (シャビン)
    謝 賓(しゃ びん)
    1979年生まれ.
    2008年東京大学大学院数理科学研究科博士後期課程修了.博士(数理科学).
    現在 信州大学学術研究院(理学系)准教授.
    専攻 確率論,解析学.

確率偏微分方程式(岩波数学叢書) [全集叢書] の商品スペック

商品仕様
出版社名:岩波書店
著者名:舟木 直久(著)/乙部 厳己(著)/謝 賓(著)
発行年月日:2019/03/14
ISBN-10:4000298259
ISBN-13:9784000298254
判型:A5
対象:専門
発行形態:全集叢書
内容:数学
言語:日本語
ページ数:335ページ
縦:22cm
他の岩波書店の書籍を探す

    岩波書店 確率偏微分方程式(岩波数学叢書) [全集叢書] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!