リグニン利活用のための最新技術動向(新材料・新素材) [単行本]
    • リグニン利活用のための最新技術動向(新材料・新素材) [単行本]

    • ¥72,6002,178 ゴールドポイント(3%還元)
    • お取り寄せ
100000009003265294

リグニン利活用のための最新技術動向(新材料・新素材) [単行本]

梅澤俊明(監修)
価格:¥72,600(税込)
ゴールドポイント:2,178 ゴールドポイント(3%還元)(¥2,178相当)
お届け日:お取り寄せこの商品は、日時を指定できません。届け先変更]詳しくはこちら
出版社:シーエムシー出版
販売開始日: 2020/03/02
お取り扱い: のお取り扱い商品です。
ご確認事項:返品不可
店舗受け取りが可能です
マルチメディアAkibaマルチメディア梅田マルチメディア博多にて24時間営業時間外でもお受け取りいただけるようになりました

リグニン利活用のための最新技術動向(新材料・新素材) の 商品概要

  • 目次

    第1章 リグニンの一気通貫的生産利用
    1 持続可能社会構築に向けた最近の社会情勢
    2 再生可能バイオマス資源
    3 再生可能バイオマス資源の一気通貫的生産利用
    4 おわりに

    第2章 リグニン分布と構造解析
    1 リグニンの分布と化学構造
    1.1 植物の進化とリグニン
    1.1.1 植物の進化におけるリグニン構造の変遷
    1.1.2 リグニンの機能
    1.2 樹木中におけるリグニンの分布
    1.2.1 樹幹内分布
    1.2.2 湾曲部におけるリグニンの分布
    1.2.3 放射柔細胞のリグニン
    1.2.4 樹皮のリグニン
    1.2.5 根端におけるリグニン(カスパリー線)
    1.2.6 リグニン分布の可視化
    2 細胞壁中でのリグニン分布
    2.1 はじめに
    2.2 針葉樹仮道管のリグニン分布
    2.3 広葉樹木部組織でのリグニン分布
    3 リグニンの化学構造
    3.1 はじめに
    3.2 脱水素重合によるリグニンの形成
    3.2.1 リグニンモノマー
    3.2.2 脱水素重合反応機構
    3.3 リグニンの構造解析アプローチ
    3.3.1 化学分析法
    3.3.2 多次元NMR法
    3.4 天然リグニンの化学構造的特徴
    3.4.1 シダ・裸子・双子葉植物の維管束リグニン
    3.4.2 単子葉類イネ科植物の維管束リグニン
    3.4.3 特定の植物種・組織特異的に生じる天然リグニン
    3.5 おわりに
    4 リグニンの迅速評価システム
    4.1 はじめに
    4.2 リグニン迅速定量法
    4.3 リグニン迅速構造解析法
    5 遺伝子組換え技術を用いたリグニン分子の側鎖構造の改変
    5.1 はじめに
    5.2 植物に内在する遺伝子の発現抑制に伴う側鎖構造の変化
    5.2.1 CAD遺伝子の発現低下に伴う分子構造の変化
    5.2.2 CCR遺伝子の発現低下に伴う分子構造の変化
    5.3 異種遺伝子の過剰発現によるリグニン側鎖構造の改変
    5.3.1 アシル化モノリグノールの過剰生産による側鎖構造の改変
    5.3.2 クルクミンの取り込みによる側鎖構造の改変
    5.3.3 バクテリア由来の酵素遺伝子の発現による側鎖構造の改変
    5.4 おわりに
    6 リグニンの代謝制御による木質バイオマスの改良
    6.1 はじめに
    6.2 リグニンの構造上の特徴
    6.3 リグニンの利用
    6.4 リグニンの代謝工学
    6.5 おわりに
    7 リグニンモデル化合物および人工リグニンポリマーの合成
    7.1 はじめに
    7.2 モノリグノールの合成とモノリグノールの脱水素重合によるリグニンモデル化合物の合成
    7.2.1 モノリグノールの合成
    7.2.2 モノリグノールの脱水素重合によるモデル化合物の合成
    7.3 β-O-4型二量体モデル化合物の合成
    7.3.1 β-O-4型二量体モデル化合物
    7.4 β-O-4型ポリマーリグニンモデル化合物の合成

    第3章 リグニンの分解・抽出
    1 熱分解によるリグニンからの化学物質生産
    1.1 はじめに
    1.2 熱分解温度と生成物の化学構造
    1.3 ケミカルス生産の視点からの各温度域におけるリグニン熱分解分子機構
    1.3.1 低温(400℃以下)
    1.3.2 中温(400~500℃)
    1.3.3 高温(600℃以上)
    1.4 おわりに
    2 超・亜臨界流体技術によるリグニンの分解
    2.1 超・亜臨界流体技術
    2.2 超・亜臨界水
    2.3 超臨界アルコール
    2.4 おわりに
    3 イオン液体を用いたリグニン分解
    3.1 はじめに
    3.2 イオン液体とは
    3.3 1-エチル-3-メチルイミダゾリウムクロリドを用いた分解
    3.4 テトラブチルアンモニウムヒドロキシドを用いた分解
    3.5 おわりに
    4 酸性および塩基性条件下におけるリグニン分解
    4.1 酸性条件下におけるリグニンの反応
    4.1.1 はじめに
    4.1.2 ベンジルカチオン構造の生成
    4.1.3 β-O-4結合部位における反応
    4.2 塩基性条件下におけるリグニンの反応
    4.2.1 はじめに
    4.2.2 フェノール性部位における反応
    4.2.3 非フェノール性部位における反応
    4.3 おわりに
    5 リグニンの電解酸化
    5.1 はじめに
    5.2 リグニンのEMS反応とは?
    5.3 リグニンのEMS反応の工業的な応用の可能性
    5.3.1 クラフトパルプ化前処理反応への適用
    5.3.2 バニリン類の生産法への適用
    5.3.3 リグノセルロースナノファイバー調製法への応用
    5.4 LMS用メディエーターを用いたEMS反応の検討
    5.4.1 単量体リグニンモデル化合物による検討
    5.4.2 二量体リグニンモデル化合物による検討
    5.4.3 二量体リグニンモデル化合物による検討(TEMPOに関する検討)
    5.4.4 人工リグニン(DHP)による検討(NHPIに関する検討)
    5.5 おわりに
    6 高活性水蒸気を用いたリグニンの分解と利用
    6.1 はじめに
    6.2 リグニンの分解・低分子化
    6.3 低分子量リグニンの抽出分離と物性評価
    6.4 エポキシ化リグニンの合成
    6.5 エポキシ化リグニン硬化物の合成
    6.6 おわりに
    7 環境にやさしいプロセス【同時酵素糖化粉砕】による機能性リグニンナノ粒子の抽出
    7.1 緒言
    7.2 植物同時酵素糖化粉砕―環境にやさしいリグニン抽出法
    7.2.1 同時酵素糖化粉砕【SESC】
    7.2.2 SESCで抽出したリグニン誘導体【SESCリグニン】の性質
    7.3 SESCリグニンの機能
    7.3.1 高分子耐熱化
    7.3.2 紫外線吸収能・難燃性
    7.4 総括
    8 パルプ化反応の現状
    8.1 クラフト蒸解
    8.1.1 リグニンの基本構成単位
    8.1.2 設備
    8.1.3 脱リグニン反応
    8.1.4 修正蒸解法のコンピューターシミュレーション
    8.2 オゾン漂白
    8.2.1 オゾンとリグニンとの反応
    8.2.2 設備

    第4章 リグニンの応用展開
    1 マテリアル利用のための改質リグニンの開発
    1.1 はじめに
    1.2 リグニンのマテリアル利用の意義
    1.2.1 リグニンの起源と本質
    1.2.2 リグニン材料利用のボトルネック
    1.2.3 針葉樹造林木の優位性
    1.3 改質リグニンの開発
    1.3.1 ポリエチレングリコール(PEG)による改質
    1.3.2 改質リグニンの製造プロセス
    1.4 改質リグニンの製品展開
    1.4.1 繊維強化材用マトリックス樹脂
    1.4.2 電子デバイス
    1.4.3 3Dプリンター用基材
    1.5 改質リグニンのビジネス展開
    1.6 おわりに
    2 電磁波触媒反応を介した植物からのリグニン系機能性高分子の創成
    2.1 はじめに
    2.2 リグニンのエポキシ樹脂原料への変換
    2.3 リグニンから機能性高分子原料バニリンの生産
    2.4 リニア型リグニンの創成と機能開発
    3 リグニンの単離・改質とリグニンを活用した機能性材料の開発
    3.1 水系及び有機溶媒系化学パルプ化と得られるリグニンの特徴
    3.2 リグニン利用の研究動向
    3.3 リグニンを原料とする電気二重層キャパシタ(Electric Double Layer Capacitor:EDLC)
    3.4 樹脂原料としてのリグニン
    4 リグニンから新規プラットホームケミカルの変換技術開発と高分子材料開発
    4.1 はじめに
    4.2 リグニンの化学構造とこれまでの利用技術
    4.3 新しいリグニン利用技術
    4.4 リグニンから生産される中間体PDCと機能性材料開発の可能性
    4.5 PDC含有機能性バイオベース高分子の開発
    4.6 PDC含有分子の強力接着剤への展開
    4.7 PDC低分子誘導体の有機ゲル化剤としての展開
    4.8 今後の展望
    5 多官能フェノール導入リグニンを利用したエポキシ樹脂硬化物の高耐熱化
    5.1 はじめに
    5.2 リグニンへの多官能フェノールの導入
    5.3 多官能フェノール導入リグニンを硬化剤として用いたエポキシ樹脂硬化物
    5.4 おわりに
    6 草本系リグニンによるフェノール樹脂の高性能化
    6.1 はじめに
    6.2 リグニンとは
    6.3 リグニンの利用
    6.4 草本系リグニンとフェノール樹脂との複合化
    6.5 草本系リグニンを含むフェノール樹脂の特性
    6.6 変性リグニン
    6.7 変性リグニンとフェノール樹脂との複合化
    6.8 変性リグニンを含むフェノール樹脂の特性
    6.9 おわりに
    7 リグニンの電気絶縁樹脂への応用
    7.1 緒言
    7.2 水蒸気爆砕リグニンの性状
    7.3 リグニン硬化エポキシ樹脂の電気絶縁樹脂への応用
    7.3.1 リグニン硬化エポキシ樹脂の性状
    7.3.2 リグニン硬化エポキシ樹脂のプリント回路基板への応用
    7.3.3 リグニン硬化エポキシ樹脂のモールド樹脂としての応用
    7.4 リグニン-エポキシ樹脂添加によるフェノキシ樹脂の高耐熱化
    7.4.1 フェノキシ樹脂中におけるリグニン-エポキシ樹脂の反応挙動
    7.4.2 リグニン-エポキシ樹脂添加フェノキシ樹脂の後架橋による耐熱性向上
    7.5 おわりに
    8 リグニン由来の難燃性樹脂
    8.1 はじめに
    8.2 リグニン由来の難燃剤
    8.3 リグニン由来の難燃樹脂
    8.4 難燃樹脂の熱分解特性
    8.5 難燃樹脂の難燃性
    8.6 最後に
    9 リグニンスルホン酸塩の利用技術
    9.1 緒言
    9.2 リグニンスルホン酸塩の基本的な性質
    9.3 リグニンスルホン酸塩の利用技術
    9.4 リグニンスルホン酸塩の利用用途
    9.5 さいごに
    10 変性リグニンの鉛電池負極添加剤としての応用
    10.1 鉛電池の概要
    10.2 鉛電池負極添加剤~スルホン化リグニン~
    10.3 実電池の充放電性能に及ぼすスルホン化リグニンの添加効果
    10.4 鉛電池添加剤として最適なリグニンの検討
    10.5 最後に
    11 海洋微生物酵素群によるリグニン分解高度化と人工漆材料への展開
    11.1 海洋由来細菌Novosphingobium sp. MBES04株のβ‒etheraseシステムの特徴
    11.2 磨砕リグニンからのフェニルプロパンモノマーのワンポット酵素生産
    11.3 NMR法によるSDRsとGSTs反応のリアルタイム追跡
    11.4 リグニン由来芳香族モノマーを用いた人工漆材料の開発
    12 不均一なリグニン由来フェノール類からcis,cis‒ムコン酸を生産する微生物株の分子育種
    12.1 はじめに
    12.2 リグニンを原料としたccMAのバイオ生産
    12.3 リグニンを炭素源としたccMAのバイオ生産
    12.3.1 針葉樹リグニンを炭素源としたccMAのバイオ生産
    12.3.2 広葉樹リグニンを炭素源としたccMAのバイオ生産
    12.3.3 Pseudomonas sp. NGC7株を宿主としたccMAのバイオ生産
    12.4 おわりに
    13 t-ブタノールを加えた木材の濃硫酸処理による有用リグニンの分離
    13.1 はじめに
    13.2 濃硫酸法木材糖化プロセスにおけるリグニン有効利用
    13.2.1 濃硫酸処理過程におけるリグニンの反応
    13.2.2 硫酸リグニンを有用化する研究事例
    13.2.3 モノフェノール類を用いたリグニンの自己縮合抑制
    13.2.4 t-ブタノールを用いるリグニン自己縮合抑制の可能性
    13.3 t-ブタノールを加えた木材の濃硫酸処理
    13.3.1 t-ブタノール添加量の設定
    13.3.2 得られるリグニンは高収率で淡色かつ高い有用性
    13.3.3 t-ブタノールを加えて得られたリグニンの化学構造
    13.3.4 自己縮合の抑制により期待される利用用途
    13.4 まとめと今後の展望
  • 内容紹介

    再生可能資源であるリグニンは,様々な機能材料の素材として早期実用化が望まれている。そのリグニンについて分布と構造解析,分解・抽出,応用展開など,多方面から利活用に向けた最新技術動向を詳細に解説した。

リグニン利活用のための最新技術動向(新材料・新素材) の商品スペック

商品仕様
出版社名:シーエムシー出版
著者名:梅澤俊明(監修)
発行年月日:2020/03
ISBN-10:4781314945
ISBN-13:9784781314945
判型:B5
対象:専門
発行形態:単行本
内容:化学
言語:日本語
ページ数:225ページ
他のシーエムシー出版の書籍を探す

    シーエムシー出版 リグニン利活用のための最新技術動向(新材料・新素材) [単行本] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!