Pythonと実例で学ぶ微分方程式―はりの方程式から感染症の数理モデルまで [単行本]
    • Pythonと実例で学ぶ微分方程式―はりの方程式から感染症の数理モデルまで [単行本]

    • ¥3,520106 ゴールドポイント(3%還元)
    • 在庫あり2025年8月5日火曜日までヨドバシエクストリームサービス便(無料)がお届け
100000009003474951

Pythonと実例で学ぶ微分方程式―はりの方程式から感染症の数理モデルまで [単行本]

価格:¥3,520(税込)
ゴールドポイント:106 ゴールドポイント(3%還元)(¥106相当)
お届け日:在庫あり今すぐのご注文で、2025年8月5日火曜日までヨドバシエクストリームサービス便(無料)がお届けします。届け先変更]詳しくはこちら
出版社:コロナ社
販売開始日: 2021/10/06
お取り扱い: のお取り扱い商品です。
ご確認事項:返品不可

カテゴリランキング

店舗受け取りが可能です
マルチメディアAkibaマルチメディア梅田マルチメディア博多にて24時間営業時間外でもお受け取りいただけるようになりました

Pythonと実例で学ぶ微分方程式―はりの方程式から感染症の数理モデルまで の 商品概要

  • 目次

    1.変数分離形の微分方程式
    1.1 微分方程式とは何か
     1.1.1 微分方程式を解くということ
     1.1.2 常微分方程式と偏微分方程式
     1.1.3 NumPyとMatplotlibの基本的な使い方
     1.1.4 はりはどうたわむのか
    1.2 変数分離形の方程式
     1.2.1 放射性炭素年代測定
     1.2.2 酵母菌の増殖,SciPyによる実データへの当てはめ
     1.2.3 電気伝導
     1.2.4 雨滴の落下速度
     1.2.5 懸垂線
     1.2.6 宇宙空間から月への自由落下
    章末問題
    2.変数分離形以外の1階微分方程式
    2.1 同次系の方程式
    2.2 1階線形方程式
    2.3 ベルヌーイの微分方程式
    2.4 完全微分方程式,contour関数による陰関数の表示
    2.5 解の存在と一意性
     2.5.1 変数分離形の解法で感じる違和感
     2.5.2 解の存在と一意性の定理
     2.5.3 逐次近似解の例
     2.5.4 関数列の収束について
    章末問題
    3.定数係数線形方程式
    3.1 典型的な運動方程式
    3.2 斉次方程式を解く
    3.3 特性方程式の解が複素数の場合
    3.4 特性方程式が重解を持つ場合
    3.5 非斉次方程式をどう解くか
     3.5.1 非斉次項が指数関数の場合
     3.5.2 P(r)=0となる場合
    3.6 非斉次項が三角関数の場合
    3.7 非斉次項が多項式の場合
     3.7.1 振り子時計の原理
     3.7.2 サスペンション
     3.7.3 振動工学(モード解析)
     3.7.4 電気回路
     3.7.5 インピーダンス
    章末問題
    4.ラプラス変換,Pythonで厳密解・流れの可視化
    4.1 ラプラス変換
    4.2 SymPyでシンボリックに微分方程式を解く
    4.3 連立微分方程式
     4.3.11 階連立微分方程式
     4.3.2 streamplot関数による微分方程式の定める流れの可視化
     4.3.3 微分方程式の定める流れの局所理論
     4.3.4 行列の指数関数
    章末問題
    5.Pythonで微分方程式を解く
    5.1 微分方程式ソルバの使い方
     5.1.1 極限周期軌道(リミットサイクル)
     5.1.2 トンネルダイオードとファン・デル・ポル方程式
     5.1.3 ローレンツ方程式とカオス・数値計算の誤差
    5.2 感染症の数理モデルを解く
     5.2.1 SIRモデル
     5.2.2 PythonでSIRモデルを解いてみよう
     5.2.3 SEIRモデル
     5.2.4 現実データへの当てはめ
    章末問題
    6.Pythonで数値解析
    6.1 基本的な数値計算アルゴリズム
     6.1.1 オイラー法
     6.1.2 素朴な数値解法がうまくいかない場合
     6.1.3 ルンゲ・クッタ法
    6.2 odeintライブラリで使われている数値解法と硬い方程式
     6.2.1 アダムス・バッシュフォース法の考え方
     6.2.2 ルンゲ現象
     6.2.3 アダムス・バッシュフォース・モールトン法
     6.2.4 硬い方程式と数値的安定性
     6.2.5 後退微分法
    章末問題
    引用・参考文献
    索引
  • 出版社からのコメント

    多分野の実例を通して、豊富な例題から微分方程式を学ぶとともに、Pythonを活用して現実問題を解けるようになることを目指す。
  • 内容紹介

    多分野の実例を通して、微分方程式の活用法を学びます。実際の例として、モード解析、江崎ダイオードを用いた発振回路方程式や、感染症の数理モデル(SIRモデル)の新型コロナウイルス(COVID-19)感染データへの当てはめ等を扱います。
    各章末には、合計100題の練習問題が用意されています。微分方程式の標準解法、Pythonを用いた解や流れの可視化、数式処理を用いた厳密解の計算、厳密解が求まらない微分方程式の数値計算について、すべての問題に解答(プログラムコードを含む)が付いています。Pythonを使いながら、微分方程式を現実に応用することが可能となるでしょう。

    図書館選書
    本書は,豊富な例題や章末問題(100問)から,微分方程式の標準的な解法や,微分方程式が現実問題にどのように応用されるかを理解するとともに,Python を活用して現実問題を解けるようになることを目的としている。
  • 著者紹介(「BOOK著者紹介情報」より)(本データはこの書籍が刊行された当時に掲載されていたものです)

    神永 正博(カミナガ マサヒロ)
    1991年東京理科大学理学部数学科卒業。1993年京都大学大学院理学研究科修士課程修了(数学専攻)。1994年京都大学大学院理学研究科博士課程中退(数学専攻)。1994年東京電機大学助手。1998年株式会社日立製作所勤務。2003年博士(理学)(大阪大学)。2004年東北学院大学講師。2005年東北学院大学助教授。2007年東北学院大学准教授。2011年東北学院大学教授

Pythonと実例で学ぶ微分方程式―はりの方程式から感染症の数理モデルまで の商品スペック

商品仕様
出版社名:コロナ社
著者名:神永 正博(著)
発行年月日:2021/10/22
ISBN-10:4339061239
ISBN-13:9784339061239
判型:B5
発売社名:コロナ社
対象:専門
発行形態:単行本
内容:数学
言語:日本語
ページ数:191ページ
縦:26cm
横:18cm
他のコロナ社の書籍を探す

    コロナ社 Pythonと実例で学ぶ微分方程式―はりの方程式から感染症の数理モデルまで [単行本] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!