機械学習〈2〉ノンパラメトリックモデル/潜在モデル [単行本]
    • 機械学習〈2〉ノンパラメトリックモデル/潜在モデル [単行本]

    • ¥2,64080 ゴールドポイント(3%還元)
    • 在庫あり2025年8月2日土曜日までヨドバシエクストリームサービス便(無料)がお届け
100000009003578864

機械学習〈2〉ノンパラメトリックモデル/潜在モデル [単行本]

価格:¥2,640(税込)
ゴールドポイント:80 ゴールドポイント(3%還元)(¥80相当)
お届け日:在庫あり今すぐのご注文で、2025年8月2日土曜日までヨドバシエクストリームサービス便(無料)がお届けします。届け先変更]詳しくはこちら
出版社:共立出版
販売開始日: 2022/08/26
お取り扱い: のお取り扱い商品です。
ご確認事項:返品不可

カテゴリランキング

店舗受け取りが可能です
マルチメディアAkibaマルチメディア梅田マルチメディア博多にて24時間営業時間外でもお受け取りいただけるようになりました

機械学習〈2〉ノンパラメトリックモデル/潜在モデル の 商品概要

  • 目次

    【第III部 ノンパラメトリックモデル】

    第6章 訓練データ保持型の学習
    6.1 はじめに
    6.2 確率密度関数の推定:ノンパラメトリック
    6.3 Nadaraya-Watsonモデル
    6.4 k近傍法
    演習問題

    第7章 カーネル法
    7.1 はじめに
    7.2 カーネル関数
    7.3 ガウス過程
    7.4 サポートベクトルマシン
    演習問題

    第8章 アンサンブル学習
    8.1 はじめに
    8.2 バギング
    8.3 ランダムフォレスト
    8.4 アンサンブル学習の期待損失
    演習問題

    【第IV部 潜在モデル】

    第9章 次元圧縮
    9.1 はじめに
    9.2 主成分分析
    9.3 t-SNE:t分布確率的近傍埋めこみ
    演習問題

    第10章 混合ガウス分布とEMアルゴリズム
    10.1 はじめに
    10.2 混合ガウス分布
    10.3 潜在変数
    10.4 EMアルゴリズム
    10.5 混合ガウス分布のパラメータ推定
    10.6 EMアルゴリズムの適用性と収束性
    演習問題

    第11章 深層生成モデル
    11.1 はじめに
    11.2 自己符号化器
    11.3 変分自己符号化器
    演習問題
  • 出版社からのコメント

    2分冊目ではノンパラメトリックモデルと潜在モデルを解説。ベイズ推論の重要性に鑑み,深層生成モデルを潜在モデルの部へおいた。
  • 内容紹介

    本書は、古典機械学習ともよぶべき題材に的を絞り、考え方をできるだけ詳細に記述した教科書である。読者の便宜を考慮し、500頁にも及ぶ1冊を分冊化させ、1巻目では「入門的基礎/パラメトリックモデル」、2巻目では「ノンパラメトリックモデル/潜在モデル」、3巻目では「数学事項:機械学習のいしずえ/演習問題解答例」を掲載している。

    本書では、機械学習全体の網羅や、深層学習を中心に据えた説明は意図していない。大量のデータが存在する対象、あるいはその近傍の対象に対しては、深層学習はきわめて高性能を発揮する。しかし、少数のデータしか得ることができない対象も多く、本書で紹介する古典的な機械学習の手法は、今後も随所で活躍するであろう。とりわけ、ベイズ的な考え方は、予測の損失最小を保証するという意味で重要である。多くの大学理工系の学部で、初年次あるいは2年次に学ぶ多変数の微積分や、固有値問題の基本をふくむ線形代数、それと確率と統計の基本事項は既知としているが、確率と統計や、対称行列に関する固有値問題などの数学的事項の要点は、第Ⅴ部(第3巻)としてまとめた。

    本書は多くの優れた書籍を参照して書かれ、とりわけ、C. M. ビショップ(著),『パターン認識と機械学習』の影響は随所にみられる。数学的記法も同書に準拠した。また、構成は、K. P. Murphy, “Probabilistic Machine Learning: An Introduction”の影響をうけている。Murphyの本では深層学習を1つの部としているが、本書では深層学習の部はもうけず、ニューラルネットワークの基礎的事項をパラメトリックモデルの部(第1巻)へ、また、深層生成モデル(の1つであるVAE)を潜在モデルの部(第2巻)へおいた。ベイズ推論の重要性に鑑み、潜在モデルを第Ⅳ部としたことは本書の特徴の1つである。

    各章には演習問題、巻末には解答例と丁寧な解説を掲載(解答例は第3巻に収録)。
  • 著者紹介(「BOOK著者紹介情報」より)(本データはこの書籍が刊行された当時に掲載されていたものです)

    岡留 剛(オカドメ タケシ)
    1988年東京大学大学院理学系研究科情報科学専攻博士後期課程修了。現在、関西学院大学工学部教授(人工知能研究センター長)、博士(理学)。専門、情報科学

機械学習〈2〉ノンパラメトリックモデル/潜在モデル の商品スペック

商品仕様
出版社名:共立出版
著者名:岡留 剛(著)
発行年月日:2022/08/30
ISBN-10:4320124898
ISBN-13:9784320124899
判型:A5
発売社名:共立出版
対象:専門
発行形態:単行本
内容:数学
言語:日本語
ページ数:178ページ
縦:21cm
その他:ノンパラメトリックモデル/潜在モデル
他の共立出版の書籍を探す

    共立出版 機械学習〈2〉ノンパラメトリックモデル/潜在モデル [単行本] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!