Pythonでスラスラわかるベイズ推論「超」入門 [単行本]
    • Pythonでスラスラわかるベイズ推論「超」入門 [単行本]

    • ¥3,08093 ゴールドポイント(3%還元)
    • 在庫あり2025年8月3日日曜日までヨドバシエクストリームサービス便(無料)がお届け
100000009003770765

Pythonでスラスラわかるベイズ推論「超」入門 [単行本]

価格:¥3,080(税込)
ゴールドポイント:93 ゴールドポイント(3%還元)(¥93相当)
フォーマット:
お届け日:在庫あり今すぐのご注文で、2025年8月3日日曜日までヨドバシエクストリームサービス便(無料)がお届けします。届け先変更]詳しくはこちら
出版社:講談社
販売開始日: 2023/11/24
お取り扱い: のお取り扱い商品です。
ご確認事項:返品不可
店舗受け取りが可能です
マルチメディアAkibaマルチメディア梅田マルチメディア博多にて24時間営業時間外でもお受け取りいただけるようになりました

Pythonでスラスラわかるベイズ推論「超」入門 の 商品概要

  • 要旨(「BOOK」データベースより)

    数学とプログラミングを対比させながら一歩一歩わかりやすく。
  • 目次


    第1章 確率分布を理解する
    1.1 ベイズ推論における確率分布の必要性
    1.2 確率変数と確率分布
    1.3 離散分布と連続分布
    1.4 PyMCによる確率モデル定義とサンプリング
    1.5 サンプリング結果分析
    1.6 確率分布とPyMCプログラミングの関係

    第2章 よく利用される確率分布
    2.1 ベルヌーイ分布(pm.Bernoulliクラス)
    2.2 二項分布(pm.Binomial クラス)
    2.3 正規分布(pm.Normal クラス)
    2.4 一様分布(pm.Uniform クラス)
    2.5 ベータ分布(pm.Beta クラス)
    2.6 半正規分布(pm.HalfNormal クラス)

    第3章 ベイズ推論とは
    3.1 ベイズ推論利用の目的
    3.2 問題設定
    3.3 最尤推定による解法
    3.4 ベイズ推論による解法
    3.5 ベイズ推論の精度を上げる方法
    3.6 ベイズ推論の活用例

    第4章 はじめてのベイズ推論実習
    4.1 問題設定 (再掲)
    4.2 最尤推定
    4.3 ベイズ推論 (確率モデル定義)
    4.4 ベイズ推論 (サンプリング)
    4.5 ベイズ推論 (結果分析)
    4.6 ベイズ推論 (二項分布バージョン)
    4.7 ベイズ推論 (試行回数を増やす)
    4.8 ベイズ推論 (事前分布の変更)
    4.9 ベータ分布で直接確率分布を求める

    第5章 ベイズ推論プログラミング
    5.1 データ分布のベイズ推論
    5.2 線形回帰のベイズ推論
    5.3 階層ベイズモデル
    5.4 潜在変数モデル

    第6章 ベイズ推論の業務活用事例
    6.1 ABテストの効果検証
    6.2 ベイズ回帰モデルによる効果検証
    6.3 IRT (Item Response Theory)によるテスト結果評価
  • 出版社からのコメント

    数学概念をプログラミングと対比させることで、スラスラと理解できる。PyMCプログラミングでベイズ推論を使いこなせるようになる
  • 内容紹介

    ★数学とプログラミングを対比させながら、一歩一歩わかりやすく!

    実務に即してPyMC5プログラミングでベイズ推論を使いこなせるようになる。
    最初の一冊として、データサイエンティストにおすすめ!
    PyMC5に完全対応!

    【サポートサイト】
    https://github.com/makaishi2/python_bayes_intro

    【主な内容】
    第1章 確率分布を理解する
    1.1 ベイズ推論における確率分布の必要性
    1.2 確率変数と確率分布
    1.3 離散分布と連続分布
    1.4 PyMCによる確率モデル定義とサンプリング
    1.5 サンプリング結果分析
    1.6 確率分布とPyMCプログラミングの関係

    第2章 よく利用される確率分布
    2.1 ベルヌーイ分布(pm.Bernoulliクラス)
    2.2 二項分布(pm.Binomial クラス)
    2.3 正規分布(pm.Normal クラス)
    2.4 一様分布(pm.Uniform クラス)
    2.5 ベータ分布(pm.Beta クラス)
    2.6 半正規分布(pm.HalfNormal クラス)

    第3章 ベイズ推論とは
    3.1 ベイズ推論利用の目的
    3.2 問題設定
    3.3 最尤推定による解法
    3.4 ベイズ推論による解法
    3.5 ベイズ推論の精度を上げる方法
    3.6 ベイズ推論の活用例

    第4章 はじめてのベイズ推論実習
    4.1 問題設定 (再掲)
    4.2 最尤推定
    4.3 ベイズ推論 (確率モデル定義)
    4.4 ベイズ推論 (サンプリング)
    4.5 ベイズ推論 (結果分析)
    4.6 ベイズ推論 (二項分布バージョン)
    4.7 ベイズ推論 (試行回数を増やす)
    4.8 ベイズ推論 (事前分布の変更)
    4.9 ベータ分布で直接確率分布を求める

    第5章 ベイズ推論プログラミング
    5.1 データ分布のベイズ推論
    5.2 線形回帰のベイズ推論
    5.3 階層ベイズモデル
    5.4 潜在変数モデル

    第6章 ベイズ推論の業務活用事例
    6.1 ABテストの効果検証
    6.2 ベイズ回帰モデルによる効果検証
    6.3 IRT (Item Response Theory)によるテスト結果評価
  • 著者紹介(「BOOK著者紹介情報」より)(本データはこの書籍が刊行された当時に掲載されていたものです)

    赤石 雅典(アカイシ マサノリ)
    アクセンチュア株式会社ビジネスコンサルティング本部AIグループシニア・プリンシパル。1985年、東京大学工学部計数工学科卒業。1987年、同大学院修士課程修了後、日本IBM株式会社に入社。Watsonの技術セールスなどを経験後、アクセンチュア株式会社に入社。現在はAI・データサイエンス系のプロジェクトの技術リードやクライアントのAI人材育成支援などを担当。京都情報大学院大学客員教授

    須山 敦志(スヤマ アツシ)
    アクセンチュア株式会社ビジネスコンサルティング本部AIグループシニア・プリンシパル。2009年、東京工業大学工学部情報工学科卒業。2011年、東京大学大学院情報工学研究科博士前期課程修了後に、ソニー株式会社に入社。その後、インフォメティス株式会社などを経て、2017年、アクセンチュア株式会社に入社。現在は、最先端テクノロジーを活用したクライアント企業の業務改革などを担当
  • 著者について

    赤石 雅典 (アカイシ マサノリ)
    アクセンチュア株式会社 ビジネス コンサルティング本部 AIグループ シニア・プリンシパル

    1985年、東京大学工学部計数工学科卒業。1987年、同大学院修士課程修了後、日本IBM株式会社に入社。Watsonの技術セールスなどを経験後、アクセンチュア株式会社に入社。現在はAI・データサイエンス系のプロジェクトの技術リードやクライアントのAI人材育成支援などを担当。京都情報大学院大学客員教授。
    著書に、『最短コースでわかる ディープラーニングの数学』『Pythonで儲かるAIをつくる』『最短コースでわかる PyTorch&深層学習プログラミング』『最短コースでわかる Pythonプログラミングとデータ分析』(いずれも日経BP)などがある。

    須山 敦志 (スヤマ アツシ)
    アクセンチュア株式会社 ビジネス コンサルティング本部 AIグループ シニア・プリンシパル

    2009年、東京工業大学工学部情報工学科卒業。2011年、東京大学大学院情報工学研究科博士前期課程修了後に、ソニー株式会社に入社。その後、インフォメティス株式会社などを経て、2017年、アクセンチュア株式会社に入社。現在は、最先端テクノロジーを活用したクライアント企業の業務改革などを担当。
    著書に、『ベイズ推論による機械学習入門』『ベイズ深層学習』『Juliaで作って学ぶベイズ統計学』『Pythonではじめるベイズ機械学習入門』(いずれも講談社)などがある。

Pythonでスラスラわかるベイズ推論「超」入門 の商品スペック

商品仕様
出版社名:講談社
著者名:赤石 雅典(著)/須山 敦志(監修)
発行年月日:2023/11/21
ISBN-10:4065337631
ISBN-13:9784065337639
判型:B5
対象:専門
発行形態:単行本
内容:情報科学
言語:日本語
ページ数:240ページ
縦:24cm
他の講談社の書籍を探す

    講談社 Pythonでスラスラわかるベイズ推論「超」入門 [単行本] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!