線形代数 [単行本]
    • 線形代数 [単行本]

    • ¥2,20066 ゴールドポイント(3%還元)
    • お取り寄せ
100000009003802444

線形代数 [単行本]

価格:¥2,200(税込)
ゴールドポイント:66 ゴールドポイント(3%還元)(¥66相当)
お届け日:お取り寄せこの商品は、日時を指定できません。届け先変更]詳しくはこちら
出版社:その他
販売開始日: 2024/02/04
お取り扱い: のお取り扱い商品です。
ご確認事項:返品不可
店舗受け取りが可能です
マルチメディアAkibaマルチメディア梅田マルチメディア博多にて24時間営業時間外でもお受け取りいただけるようになりました

線形代数 [単行本] の 商品概要

  • 目次

    もくじ
    はじめに ································································ 3
    第1 章 行列とベクトル ··················································· 9
    1. 1. ベクトルとは 9
    1. 2. ベクトルの加減演算 12
    1. 3. ベクトルの掛け算 15
    1. 4. ベクトルの割り算 18
    1. 5. 行列とはなにか 18
    1. 6. 行列の加減演算 20
    1. 7. 行列の掛け算 21
    1. 8. 行列の割り算 28

    第2 章 連立1 次方程式の解法と行列 ······································· 29
    2. 1. 2 元連立1 次方程式の解法 29
    2. 2. 連立1 次方程式の行列表示 30
    2. 3. 拡大係数行列 31
    2. 4. 行基本変形 32
    2. 5. 逆行列による解法 35
    2. 6. 逆行列の計算方法 37
    2. 7. 行基本変形による逆行列の求め方 40
    2. 8. 3 元連立1 次方程式の解法 42
    2. 9. 多元連立1 次方程式の解法 46

    第3 章 行列式と連立1 次方程式 ············································· 54
    3. 1. 行列式とは 54
    3. 2. 連立方程式の解と行列式 56
    3. 3. 行列式による3 元連立1 次方程式の解 58
    3. 4. 3 次正方行列の行列式の計算方法 59
    3. 5. 余因子展開 61
    3. 6. 3 元連立1 次方程式の解法 64
    3. 7. 余因子行列と逆行列 66

    第4 章 行列式の性質 ······················································· 72
    4. 1. 要素積 72
    4. 2. 置換 73
    4. 3. 行列式の特徴 80
    4. 3. 1. 行列式の余因子展開 80
    4. 3. 2. 行列式の値が0 となる場合 82
    4. 3. 3. 行列式の分解 83
    4. 3. 4. 行あるいは列の入れ替え 89
    4. 4. 行列式における行および列基本変形 91
    4. 5. 三角行列の行列式 95
    4. 6. 行列の積と行列式 99

    第5 章 クラメルの公式 ··················································· 103
    5. 1. クラメルの公式の導出 103
    5. 2. 多元連立1 次方程式の解法 107
    5. 3. EXCEL による行列式の計算 112
    5. 4. 同次方程式の解 112

    第6 章 正方行列 ························································· 116
    6. 1. 正方行列の加減演算 116
    6. 2. 正方行列の掛け算 117
    6. 2. 1. べき乗計算 117
    6. 2. 2. 行列の積の可換性 118
    6. 3. 行列のべき乗 125
    6. 4. 単位行列と逆行列 128
    6. 5. 対称行列と直交行列 130
    6. 6. 行列の階数 134
    6. 7. 解の自由度 137

    第7 章 線形空間と線形変換 ················································ 139
    7. 1. 線形空間 139
    7. 2. 線形従属と線形独立 140
    7. 3. 基底 142
    7. 4. グラムシュミットの正規直交基底 144
    7. 5. 行列と線形変換 148
    7. 6. 直交変換と直交行列 155
    7. 7. 直交変換と内積 159

    第8 章 固有値と固有ベクトル ·············································· 162
    8. 1. 固有値と固有ベクトル 162
    8. 2. 固有方程式 164
    8. 3. 行列のべき乗 167
    8. 4. 3 次正方行列 172
    8. 5. 固有ベクトルの正規化 175
    8. 6. 対称行列の対角化 178
    8. 7. 固有値が複素数の場合 183
    8. 8. 固有値が重解の場合 185
    8. 9. ケーリーハミルトンの定理 187
    8. 10. 2 次曲線の標準化 191
    8. 10. 1. 平行移動 192
    8. 10. 2. 標準形 193
    8. 10. 3. 座標変換 198

    第9 章 ジョルダン標準形 ·················································· 205
    9. 1. 対角化できない行列 205
    9. 2. ジョルダン標準形 207
    9. 3. 2 次正方行列のべき乗 209
    9. 4. 3 次正方行列 214
    9. 5. 3 次行列のべき乗 217
    9. 6. 固有値が3 重解の場合 220
    9. 7. べき乗計算 224
    9. 8. ジョルダン細胞 228
    9. 8. 1. 2 次正方行列のジョルダン細胞 228
    9. 8. 2. 3 次正方行列のジョルダン標準形 228
    9. 8. 3. 解の自由度 229
    9. 8. 4. 対角化可能性 230

    おわりに ································································· 233
  • 内容紹介

    この1冊で、データサイエンスの基礎である行列とベクトルの演算、
    および行列式が深く理解できる。

    線形代数が苦手という話をよく聞く。一方で、線形代数は微積分とともに大学数学の必修科目に位置付けられている。それは、行列とベクトル演算が多くの理工系分野で広く利用されているからである。なにより話題のAIのディープラーニングやデータサイエンスには必須の道具となっている。本書では、「数学は実践に応用してこそ理解できる」というコンセプトのもとに、豊富な演習問題を通して、線形代数の基礎と応用が理解できることを目指している。

    図書館選書
    この1冊で、データサイエンスの基礎である行列とベクトルの演算、
    および行列式が深く理解できる。
    本書では、「数学は実践に応用してこそ理解できる」というコンセプトのもとに、豊富な演習問題…
  • 著者について

    村上 雅人 (ムラカミ マサト)
    理工数学研究所 所長 工学博士
    情報・システム研究機構 監事
    2012 年より2021 年まで芝浦工業大学学長
    2021 年より岩手県DX アドバイザー
    現在、日本数学検定協会評議員、日本工学アカデミー理事
    技術同友会会員、日本技術者連盟会長
    著書「大学をいかに経営するか」(飛翔舎)
    「なるほど生成消滅演算子」(海鳴社)
    など多数

    鈴木 絢子 (スズキ アヤコ)
    理工数学研究所 研究員
    専門 超伝導工学

    小林 忍 (コバヤシ シノブ)
    理工数学研究所 主任研究員

線形代数 [単行本] の商品スペック

商品仕様
出版社名:飛翔舎
著者名:村上雅人(著)
発行年月日:2024/02
ISBN-10:4910879129
ISBN-13:9784910879123
判型:A5
発売社名:飛翔舎
対象:専門
発行形態:単行本
内容:数学
言語:日本語
ページ数:236ページ
縦:21cm
横:15cm
厚さ:2cm
他のその他の書籍を探す

    その他 線形代数 [単行本] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!