分散SQLクエリエンジンTrino徹底ガイド [単行本]
    • 分散SQLクエリエンジンTrino徹底ガイド [単行本]

    • ¥3,960396 ゴールドポイント(10%還元)
    • 在庫あり2025年6月2日月曜日までヨドバシエクストリームサービス便(無料)がお届け
100000009003809151

分散SQLクエリエンジンTrino徹底ガイド [単行本]



ゴールドポイントカード・プラスのクレジット決済で「書籍」を購入すると合計10%ポイント還元!書籍の購入はゴールドポイントカード・プラスのクレジット決済がお得です。
通常3%ポイント還元のところ、後日付与されるクレジット決済ポイント(1%)と特典ポイント(6%)で合計10%ポイント還元!詳しくはこちら

価格:¥3,960(税込)
ゴールドポイント:396 ゴールドポイント(10%還元)(¥396相当)
フォーマット:
お届け日:在庫あり今すぐのご注文で、2025年6月2日月曜日までヨドバシエクストリームサービス便(無料)がお届けします。届け先変更]詳しくはこちら
出版社:秀和システム
販売開始日: 2024/03/21
お取り扱い: のお取り扱い商品です。
ご確認事項:返品不可
店舗受け取りが可能です
マルチメディアAkibaマルチメディア梅田マルチメディア博多にて24時間営業時間外でもお受け取りいただけるようになりました

分散SQLクエリエンジンTrino徹底ガイド [単行本] の 商品概要

  • 要旨(「BOOK」データベースより)

    「SQL‐on‐Anything」をTrinoで実現する!標準SQLに準拠し、Hadoopから従来のRDBMS、NoSQLまで、さまざまなデータソースに対してクエリを実行できるTrinoの全てを、主要開発者が解き明かす。
  • 目次

    序文
    著者前書き
    日本語版のための前書き
    訳者前書き

    第1部 Trinoを使い始める
     第1章 Trinoの紹介
      1.1 ビッグデータの問題点
      1.2 Trinoの出番
       1.2.1 パフォーマンスとスケーラビリティを考慮した設計
       1.2.2 SQL-on-Anything
       1.2.3 データストレージとクエリのコンピューティングリソースの分離
      1.3 Trinoのユースケース
       1.3.1 単一のSQL分析アクセスポイント
       1.3.2 データウェアハウスとソースシステムへのアクセスポイント
       1.3.3 SQLベースのアクセスを提供する
       1.3.4 フェデレーテッドクエリ
       1.3.5 仮想データウェアハウスのセマンティックレイヤー
       1.3.6 データレイククエリエンジン
       1.3.7 SQLによる変換とETL
       1.3.8 高速な応答時間による、よりよいインサイト
       1.3.9 ビッグデータ、機械学習、人工知能
       1.3.10 その他のユースケース
      1.4 Trinoのリソース
       1.4.1 Webサイト
       1.4.2 ドキュメント
       1.4.3 コミュニティチャット
       1.4.4 ソースコード、ライセンス、バージョン
       1.4.5 コントリビュート
       1.4.6 本書のリポジトリ
       1.4.7 アヤメのデータセット
       1.4.8 フライトのデータセット
       1.4.9 Trinoの簡単な歴史
      1.5 まとめ
     第2章 Trinoのインストールと設定
      2.1 DockerコンテナでTrinoを試す
      2.2 アーカイブファイルからのインストール
       2.2.1 Java仮想マシン(JVM)
       2.2.2 Python
       2.2.3 インストール
       2.2.4 設定
      2.3 データソースの追加
      2.4 Trinoの実行
      2.5 まとめ
     第3章 Trinoの使い方
      3.1 Trinoのコマンドラインインタフェース
       3.1.1 はじめに
       3.1.2 ページネーション
       3.1.3 履歴と補完
       3.1.4 追加の診断情報
       3.1.5 クエリの実行
       3.1.6 出力フォーマット
       3.1.7 エラーを無視する
      3.2 Trino JDBCドライバ
       3.2.1 ドライバのダウンロードと登録
       3.2.2 Trinoへの接続の確立
      3.3 TrinoとODBC
      3.4 クライアントライブラリ
      3.5 Trino Web UI
      3.6 TrinoにおけるSQLサポート
       3.6.1 概念
       3.6.2 最初の例
      3.7 まとめ

    第2部 Trino詳説
     第4章 Trinoのアーキテクチャ
      4.1 コーディネーターとワーカー
       4.1.1 コーディネーター
       4.1.2 ディスカバリサービス
       4.1.3 ワーカー
      4.2 コネクタを使ったアーキテクチャ
      4.3 カタログ、スキーマ、テーブル
      4.4 クエリ実行モデル
      4.5 クエリプランニング
       4.5.1 クエリのパースと分析
       4.5.2 初期クエリプランニング
      4.6 最適化ルール
       4.6.1 述語のプッシュダウン
       4.6.2 クロス結合除去
       4.6.3 TopN
       4.6.4 部分集計
      4.7 実装ルール
       4.7.1 ラテラル結合の非相関化
       4.7.2 セミ結合(IN)の非相関化
      4.8 コストベースドオプティマイザー
       4.8.1 コストの概念
       4.8.2 結合のコスト
       4.8.3 テーブルの統計情報
       4.8.4 フィルタ統計
       4.8.5 パーティションテーブルのテーブル統計
       4.8.6 結合列挙
       4.8.7 ブロードキャスト結合と分散結合
      4.9 テーブルの統計情報を使用した作業
       4.9.1 Trino ANALYZE
       4.9.2 ディスクへの書き込み時の統計収集
       4.9.3 Hive ANALYZE
       4.9.4 テーブル統計の表示
      4.10 まとめ
     第5章 本番環境の構築
      5.1 設定の詳細
      5.2 サーバ構成
      5.3 ロギング
      5.4 ノードの設定
      5.5 JVM設定
      5.6 起動スクリプト
      5.7 クラスタ構築
      5.8 RPMインストール
       5.8.1 インストールディレクトリの構造
       5.8.2 設定
       5.8.3 Trinoのアンインストール
      5.9 クラウド環境へのクラスタ構築
      5.10 Kubernetesデプロイメント用のHelmチャート
      5.11 クラスタのサイズ設定に関する考慮事項
      5.12 まとめ
     第6章 コネクタ
      6.1 設定
      6.2 RDBMSコネクタの例:PostgreSQL
       6.2.1 クエリプッシュダウン
       6.2.2 並列処理と同時実行
       6.2.3 その他のRDBMS用コネクタ
       6.2.4 セキュリティ
       6.2.5 クエリパススルー
      6.3 TrinoのTPC-HコネクタとTPC-DSコネクタ
       6.4.1 Apache HadoopとHive
      6.4 分散ストレージデータソース用のHiveコネクタ
       6.4.2 Hiveコネクタ
       6.4.3 Hiveスタイルのテーブル形式
       6.4.4 管理テーブルと外部テーブル
       6.4.5 パーティション化されたデータ
       6.4.6 データのロード
       6.4.7 ファイルフォーマットと圧縮
       6.4.8 MinIOの例
      6.5 現代的な分散ストレージ管理と分析
      6.6 非リレーショナルデータソース
      6.7 Trino JMXコネクタ
      6.8 ブラックホールコネクタ
      6.9 メモリコネクタ
      6.10 その他のコネクタ
      6.11 まとめ
     第7章 高度なコネクタの例
      7.1 Phoenixを使用したHBaseへの接続
      7.2 キーバリューストアコネクタの例:Accumulo
       7.2.1 Trino Accumuloコネクタを利用
       7.2.2 Accumuloにおける述語のプッシュダウン
      7.3 Apache Cassandraコネクタ
      7.4 ストリーミングシステムコネクタの例:Kafka
      7.5 ドキュメントストアコネクタの例:Elasticsearch
       7.5.1 概要
       7.5.2 設定と利用方法
       7.5.3 クエリ処理
       7.5.4 全文検索
       7.5.5 まとめ
      7.6 Trinoにおけるクエリフェデレーション
      7.7 抽出、変換、読み込み、フェデレーテッドクエリ
      7.8 まとめ
     第8章 SQLの利用
      8.1 Trinoのステートメント
      8.2 Trinoのシステムテーブル
      8.3 カタログ
      8.4 スキーマ
      8.5 インフォメーションスキーマ
      8.6 テーブル
       8.6.1 テーブルおよび列プロパティ
       8.6.2 既存のテーブルのコピー
       8.6.3 クエリ結果から新しいテーブルを作成
       8.6.4 テーブルの修正
       8.6.5 テーブルの削除
       8.6.6 コネクタによるテーブルの制限
      8.7 ビュー
      8.8 セッション情報と設定
      8.9 データ型
       8.9.1 コレクションデータ型
       8.9.2 日付と時刻のデータ
       8.9.3 型の変換
      8.10 SELECTステートメントの基本
      8.11 WHERE句
      8.12 GROUP BY句とHAVING句
      8.13 ORDER BY句とLIMIT句
      8.14 JOINステートメント
      8.15 UNION句、INTERSECT句、EXCEPT句
      8.16 グループ化操作
      8.17 WITH句
      8.18 サブクエリ
       8.18.1 スカラーサブクエリ
       8.18.2 EXISTSサブクエリ
       8.18.3 量化されたサブクエリ
      8.19 テーブルからデータの削除
      8.20 まとめ
     第9章 高度なSQL
      9.1 関数と演算子の概要
      9.2 スカラー関数と演算子
      9.3 比較演算子
      9.4 論理演算子
      9.5 BETWEENステートメントによる範囲の選択
      9.6 IS(NOT)NULLによる値の検出
      9.7 算術関数と算術演算子
      9.8 三角関数
      9.9 定数とランダム関数
      9.10 文字列関数と演算子
      9.11 文字列とMAP
      9.12 Unicode
      9.13 正規表現
      9.14 複雑なデータ型のネストを展開
      9.15 JSON関数
      9.16 日付と時刻の関数と演算子
      9.17 ヒストグラム
      9.18 集計関数
       9.18.1 MAP集計関数
       9.18.2 近似集計関数
      9.19 ウィンドウ関数
      9.20 ラムダ式
      9.21 地理空間関数
      9.22 プリペアドステートメント
      9.23 まとめ

    第3部 Trinoのユースケース
     第10章 セキュリティ
      10.1 認証
       10.1.1 パスワード認証とLDAP認証
       10.1.2 その他の認証方式
      10.2 認可
       10.2.1 システムアクセスコントロール
       10.2.2 コネクタアクセスコントロール
      10.3 暗号化
       10.3.1 Trinoクライアントとコーディネーター間の通信暗号化
       10.3.2 JavaキーストアとJavaトラストストアの作成
       10.3.3 Trinoクラスタ内の通信の暗号化
      10.4 認証局と自己署名証明書の比較
      10.5 証明書の認証
      10.6 Kerberos
       10.6.1 前提条件
       10.6.2 Kerberosクライアント認証
      10.7 データソースへのアクセスとセキュリティの設定
      10.8 HiveコネクタによるKerberos認証
       10.8.1 Hive メタストアサービスの認証
       10.8.2 HDFSの認証
      10.9 クラスタの分離
      10.10 まとめ
     第11章 Trinoとほかのツールの統合
      11.1 Apache Supersetによるクエリやビジュアライゼーション
      11.2 RubiXによるパフォーマンスの向上
      11.3 Apache Airflowによるワークフロー
      11.4 組み込みTrinoの例:Amazon Athena
      11.5 便利な商用ディストリビューション:Starburst EnterpriseとStarburst Galaxy
      11.6 その他の統合例
      11.7 カスタムインテグレーション
      11.8 まとめ
     第12章 本番環境
      12.1 Trino Web UIによるモニタリング
       12.1.1 クラスタレベルの詳細
       12.1.2 クエリのリスト
       12.1.3 クエリの詳細画面
      12.2 Trino SQLのクエリのチューニング
      12.3 メモリ管理
      12.4 タスクの同時並行性
      12.5 ワーカーのスケジューリング
      12.6 ネットワーク上のデータ交換
       12.6.1 同時並行性
       12.6.2 バッファサイズ
      12.7 JVM(Java Virtual Machine)のチューニング
      12.8 リソースグループ
       12.8.1 リソースグループの定義
       12.8.2 スケジューリングポリシー
       12.8.3 セレクタルールの定義
      12.9 まとめ
     第13章 実際の事例
      13.1 デプロイメントとランタイム・プラットフォーム
      13.2 クラスタのサイジング
      13.3 Hadoop/Hive移行のユースケース
      13.4 その他のデータソース
      13.5 ユーザーとトラフィック
      13.6 まとめ

    終わりに
    索引
    訳者後書き
    著者プロフィール
  • 出版社からのコメント

    「SQL-on-Anything」をTrinoで実現する!
  • 内容紹介

    Trinoは、分散SQLクエリエンジンと呼ばれるツールで、異なるデータソースに対して標準的なSQLで効率的なアクセスを可能にするオープンソースのツールです。分散実行を使用して膨大なデータを効率的にクエリするために、ゼロから設計と開発が行われました。
    本書は、Trinoの主要開発者である3人が、Trino自体の紹介から、インストール、設定と運用、事例紹介まで、全貌を余すところなく執筆しています。また、翻訳も、日本のコミュニティのメンバーが担当しており、実質的なオフィシャルガイドといえます。
    Trinoについての包括的で実践的なガイドであり、次のようなポイントをカバーしています。

    ・Trinoの基本
    Trinoのアーキテクチャ、クエリエンジンの概要、データソースへの接続方法など、基本的なトピックを詳しく解説しています。Trinoを利用するだけであれば詳細に知っておく必要はありません、使いこなすためには押さえておくべき知識です。
    ・クエリの最適化
    Trinoのクエリパフォーマンスを最大化するためのベストプラクティスとチューニング方法についての具体的なアドバイスがあります。
    ・セキュリティと認証
    データセキュリティ、アクセス制御、認証の設定方法についてのガイダンスが提供されています。Trinoはさまざまなデータソースにアクセスできるため、セキュリティには細心の注意を払う必要があります。
    ・実践的な使用例:Trinoを使用して実際のビジネスケースを解決する方法についての実践的な例が豊富に含まれています。実際の事例での具体的な数字が示されています。
    ・エコシステムと統合: Trinoをほかのツールやプラットフォームと統合する方法について詳細に説明しています。

    本書は『Trino: The Definitive Guide, 2nd Edition』(O'Reilly Media, 2022)の日本語版です。

    図書館選書
    分散SQLクエリエンジンTrinoの主要開発者である3人が、Trino自体の紹介から、インストール、設定と運用、事例紹介まで、全貌を余すところなく解説した実質的なオフィシャルガイド。
  • 著者紹介(「BOOK著者紹介情報」より)(本データはこの書籍が刊行された当時に掲載されていたものです)

    Fuller,Matt(FULLER,MATT/Fuller,Matt)
    マット・フラー。Starburstの共同設立者

    Moser,Manfred(MOSER,MANFRED/Moser,Manfred)
    マンフレッド・モーザー。Starburstのコミュニティアドボケイト、ライター、トレーナー、ソフトウェアエンジニア

    Traverso,Martin(TRAVERSO,MARTIN/Traverso,Martin)
    マーティン・トラヴェルソ。Trinoソフトウェア財団の共同設立者であり、Starburst CTO
  • 著者について

    Matt Fuller (マットフラー)
    Starburstの共同設立者。Starburst以前は、Teradataのエンジニアディレクターとして、企業向けにTrinoを導入するために新しいCenter for Hadoop部門を構築する役割を果たしました。2015年以来、オープンソースのTrinoプロジェクトに貢献するチームを管理し、内部のTrinoプロダクトロードマップを主導してきました。Starburstは、後にTeradata内のこのチームから形成されました。Teradata以前は、Verticaの初期のエンジニアの1人で、クエリオプティマイザーを共同で構築しました。Very Large Databases(VLDB)の出版著者でもあり、データベース管理システム分野で米国特許を取得しています。

    Manfred Moser (マンフレッドモーザー)
    Starburstのコミュニティアドボケイト、ライター、トレーナー、ソフトウェアエンジニア。長い間、オープンソースソフトウェアの開発と普及に貢献してきました。Apache Mavenのコミッターであり、Hudsonなどの書籍を執筆し、オープンソースコミュニティとプロジェクトで活発に活動しています。経験豊富なトレーナーであり、Walmart Labs、Sonatype、Telusなどの企業向けに20,000人以上の開発者をトレーニングしています。データベースのバックグラウンドには、RDBMSスペースでのデータベースと関連アプリケーションの設計、およびビジネスインテリジェンスコンサルタントとしての経験を含んでいます。Trinoを使用できることに喜んでおり、Trinoコミュニティブロードキャストの共同ホストとしてTrinoの素晴らしさを広めています。

    Martin Traverso (マーティントラヴェルソ)
    Trinoソフトウェア財団の共同設立者であり、Starburst CTO。Starburst以前は、Facebookのソフトウェアエンジニアとして、高速な対話型SQLアナリティクスの必要性を認識し、ほかの3人のエンジニアと協力してPresto(今のTrino)を開発し、Trinoの開発チームを主導しました。2013年春、Trinoは本番環境で展開され、同年秋にオープンソース化されました。それ以来、TrinoはFacebook内外で広く採用されています。Facebook以前は、ProofpointとNingでアーキテクトとして、多数の複雑なエンタープライズおよびソーシャルネットワークアプリケーションの開発とアーキテクチャ設計を指導しました。

    蛯原裕弥 (エビハラユウヤ)
    Starburstソフトウェアエンジニア、Trino Software Foundationメンテナー。2021年8月より現職。Trinoへの新しいSQLシンタックスの追加、Apache IcebergやDelta Lake向けのコネクタの開発およびStarburstの日本市場への展開を支援しています。

    佐々木海 (ササキカイ)
    Treasure Dataソフトウェアエンジニア。主にTrinoやHadoopなどの分散システムの開発に長年従事しており、2015年より現職。大規模データをマーケティングやビジネスに活かすためのアプリケーション、CDPの開発に携わっています。

    鯵坂明 (アジサカアキラ)
    Amazon Web Services Japan G.K. シニアソフトウェアエンジニア。Apache Hadoopなど分散システムに関連するOSSコミュニティで長年活動しています。2022年より現職にてAWS Glueの開発に携わっています。

    西塚要 (ニシヅカカナメ)
    NTT Communicationsエバンジェリスト。データドリブン経営を目指しNTTCom初めての全社データ組織の立ち上げ(2019年)に参画しました。以後、HadoopやTrinoを利用したデータ基盤の開発リーダーとして全社のデータ活用に貢献しています。

    髙田美紀 (タカタミキ)
    NTT Communicationsエキスパート。社内向け全社データ基盤の設計・開発・運用に従事しています。2017年頃からはHadoopエコシステムとTrino(旧Presto)を採用し、大規模データの分析に関する課題解決に寄与してきました。

分散SQLクエリエンジンTrino徹底ガイド [単行本] の商品スペック

発行年月日 2024/03/28
ISBN-10 4798071676
ISBN-13 9784798071671
ページ数 392ページ
24cm
発売社名 秀和システム
判型 B5
Cコード 3055
対象 専門
発行形態 単行本
内容 電子通信
他の秀和システムの書籍を探す
分類 工学
成年向け書籍マーク G
書店分類コード K320
発売情報解禁日 2024/01/18
書籍ジャンル コンピュータ
再販商品 再販
書籍販売条件 委託
言語 日本語
出版社名 秀和システム
著者名 Matt Fuller
Manfred Moser
Martin Traverso
蛯原 裕弥
佐々木 海
鯵坂 明
西塚 要
髙田 美紀
その他 原書名: Trino:The Definitive Guide〈Fuller,Matt;Moser,Manfred〉

    秀和システム 分散SQLクエリエンジンTrino徹底ガイド [単行本] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!