Kaggleではじめる大規模言語モデル入門 自然言語処理〈実践〉プログラミング(KS情報科学専門書) [単行本]
    • Kaggleではじめる大規模言語モデル入門 自然言語処理〈実践〉プログラミング(KS情報科学専門書) [単行本]

    • ¥3,960119 ゴールドポイント(3%還元)
    • ただいま予約受付中!発売日以降のお届け日本全国配達料金無料
Kaggleではじめる大規模言語モデル入門 自然言語処理〈実践〉プログラミング(KS情報科学専門書) [単行本]
画像にマウスを合わせると上部に表示
100000009004188538

Kaggleではじめる大規模言語モデル入門 自然言語処理〈実践〉プログラミング(KS情報科学専門書) [単行本]

高野海斗(編著)齋藤慎一朗(編著)石原祥太郎(編著)


ゴールドポイントカード・プラスのクレジット決済で「書籍」を購入すると合計12%ゴールドポイント還元!合計12%還元書籍の購入はゴールドポイントカード・プラスのクレジット決済がお得です。
通常3%ゴールドポイント還元のところ、後日付与されるクレジット決済ポイント(1%)と特典ポイント(6%)、さらにご利用明細WEBチェックにご登録いただくと2%追加して合計12%ゴールドポイント還元!詳しくはこちら

価格:¥3,960(税込)
ゴールドポイント:119 ゴールドポイント(3%還元)(¥119相当)
お届け日:ただいま予約受付中!発売日以降のお届け
日本全国配達料金無料
出版社:講談社
販売開始日: 2026/01/16
お取り扱い: のお取り扱い商品です。
ご確認事項:返品不可

Kaggleではじめる大規模言語モデル入門 自然言語処理〈実践〉プログラミング(KS情報科学専門書) の 商品概要

  • 目次

    《基礎編》
    1. 自然言語処理の基礎
    2. データサイエンスコンペティションの基礎
    3. 「atmaCup #17」に挑戦
    4. 大規模言語モデルの性能改善
    5. 大規模言語モデルの軽量化・高速化・省メモリ化

    《応用編》
    6. Jigsaw Unintended Bias in Toxicity Classification
    7. CommonLit - Evaluate Student Summaries
    8. Kaggle - LLM Science Exam
    9. Bengali.AI Speech Recognition
    10. The Learning Agency Lab - PII Data Detection
    11. Eedi - Mining Misconceptions in Mathematics
    12. WSDM Cup - Multilingual Chatbot Arena
    13. AI Mathematical Olympiad - Progress Prize 2
  • 出版社からのコメント

    大規模言語モデルの基本的な使い方から、性能を底上げする応用的な使い方、実践的な暗黙知までを幅広く解説。秋葉拓哉氏推薦!
  • 内容紹介

    【推薦の言葉】

    あなたのLLMスキル、「実戦」で通用しますか?
    ファインチューニング、RAG、量子化、モデルマージ……
    知識や理論を知っているだけでは、性能を引き出すことはできません。

    トップKagglerたちはスコアを削り出すために、
    何を試し、何を捨て、なぜその手法を選んだのか。
    課題解決のための「本物」の技術を身につけられる一冊です。

    ――秋葉拓哉(Sakana AI Staff Research Scientist)


    従来のKaggle関連書籍では、十分に取り扱うことができずにいたテキストデータを扱うコンペティション(NLPコンペ)に焦点を当てた初の書籍です。注目が集まっている大規模言語モデルに関する内容をふんだんに盛り込み、基本的な使い方から、性能を底上げする応用的な使い方までを幅広く解説しています。

    ・実践的な課題解決の場で得られた知見をもとに内容を構成し、教科書的な書籍とは異なる実用的な視点を提供。コンペ参加者に限らず、大規模言語モデルに関心を持つエンジニアや研究者にとっても有益!

    ・基礎編では、基礎知識のみにとどめず、大規模言語モデルの性能をさらに引き出すための、実践的な暗黙知や勘所などのウラ側も詳しく解説。コンペの上位スコアを追体験できるサンプルコードも提供。

    ・応用編では、多彩な8つのKaggleコンペを題材に、概要・データ構造・評価指標を整理し、ベースラインとして公開されている手法および上位解法を紹介。

    【編著者】
    高野海斗(主に1、3章)/齋藤慎一朗(主に4、5、10章)/石原祥太郎(主に2章と全体の編集)

    【応用編の寄稿者】
    坂見耕輔さん(6章)/中真人さん(7章)/郭林升さん(8章)/三好拓志さん(9章)/村上直輝さん(11章)/洪立航さん(12章)/吉原浩之さん(13章)/井ノ上雄一さん(13章)/山口大器さん(13章)

    【サポートサイト】
    サンプルコード・参考文献・正誤表・編著者および寄稿者のプロフィール一覧を掲載します。
    https://github.com/sinchir0/kaggle_llm_book/
  • 著者について

    高野 海斗 (タカノ カイト)
    高野 海斗 たかの かいと

    Kaggle Master。主に1、3章を執筆。資産運用会社で自然言語処理技術を活用した投資戦略の開発や業務効率化ツールの開発を担当。2023年に開催された「LLM - Detect AI Generated Text」コンペで単独で金メダルを獲得したほか、さまざまなコンペでメダルを獲得。共著に『自然言語処理の導入と活用事例』。博士(理工学)。大阪公立大学客員研究員。人工知能学会企画委員(コンペ担当)。

    齋藤 慎一朗 (サイトウ シンイチロウ)
    齋藤 慎一朗 さいとう しんいちろう

    Kaggle Master。主に4、5、10章を執筆。Sansan株式会社研究開発部シニアリサーチャー。業務ではファインチューニングしたLLMを活用したプロダクト改善に従事。Kaggleでは「MAP - Charting Student Math Misunderstandings」コンペで金メダルを獲得したほか「The Learning Agency Lab - PII Data Detection」コンペや「LMSYS - Chatbot Arena Human Preference Predictions」コンペにて銀メダルを獲得。LLMの技術記事を多く投稿。Kaggle Competitions MasterおよびNotebooks Master。共著に『Polars とpandas で学ぶデータ処理アイデアレシピ55』。

    石原 祥太郎 (イシハラ ショウタロウ)
    石原 祥太郎 いしはら しょうたろう

    Kaggle Master。主に2章の執筆と全体の編集を担当。株式会社日本経済新聞社でLLMの開発や利活用を推進。Kaggleでは「PetFinder.my Adoption Prediction」コンペの優勝をはじめ、Kaggle Days Tokyoでのコンペ開催、「Kaggle Days Championship Final 2022」進出など、幅広い経験を持つ。共著に『PythonではじめるKaggle スタートブック』『Kaggleに挑む深層学習プログラミングの極意』『事例でわかるMLOps』、訳書に『Kaggle Grandmasterに学ぶ機械学習実践アプローチ』。2019年から「Weekly Kaggle News」を配信している。人工知能学会企画委員(コンペ担当)、Google Developer Expert(AI、Kaggle)。

Kaggleではじめる大規模言語モデル入門 自然言語処理〈実践〉プログラミング(KS情報科学専門書) の商品スペック

商品仕様
出版社名:講談社
著者名:高野海斗(編著)/齋藤慎一朗(編著)/石原祥太郎(編著)
発行年月日:2026/01
ISBN-10:4065415241
ISBN-13:9784065415245
判型:B5
対象:専門
発行形態:単行本
内容:情報科学
言語:日本語
ページ数:336ページ
他の講談社の書籍を探す

    講談社 Kaggleではじめる大規模言語モデル入門 自然言語処理〈実践〉プログラミング(KS情報科学専門書) [単行本] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!