実践XAI(説明可能なAI) 機械学習の予測を説明するためのPythonコーディング(インプレス) [電子書籍]
    • 実践XAI(説明可能なAI) 機械学習の予測を説明するためのPythonコーディング(インプレス) [電子書籍]

    • ¥3,960792 ゴールドポイント(20%還元)
    • すぐ読めます
100000086601990748

実践XAI(説明可能なAI) 機械学習の予測を説明するためのPythonコーディング(インプレス) [電子書籍]

価格:¥3,960(税込)
ゴールドポイント:792 ゴールドポイント(20%還元)(¥792相当)
フォーマット:
専用電子書籍リーダアプリ「Doly」が必要です。無料ダウンロード
出版社:インプレス
公開日: 2023年06月20日
すぐ読めます。
お取り扱い: のお取り扱い商品です。
ご確認事項:電子書籍リーダーアプリ「Doly」専用コンテンツ
こちらの商品は電子書籍版です

実践XAI(説明可能なAI) 機械学習の予測を説明するためのPythonコーディング(インプレス) の 商品概要

  • XAI Pythonライブラリで予測結果を説明。
    ブラックボックスからグラスボックスへ。

    ビジネス上の意思決定につながる機械学習の予測には、解釈・説明が求められます。
    そこで、そうした解釈・説明を行うための手法を紹介していきます。

    まず、モデルの説明可能性と解釈可能性の全体像、倫理的に考慮すべき点、
    生成された予測のバイアスについて説明します。

    次に、LIME、SHAP、Skater、ELI5、skope-rulesといったPythonライブラリを使って、
    モデルがなぜそのように予測するのかを探っていきます。

    予測モデルとして、線形・非線形モデルのほか、アンサンブルモデル、時系列モデル、
    自然言語処理、ディープラーニング、コンピュータービジョンを取り上げます。

    本書は解釈・説明のための方法を包括的に取り上げており、
    機械学習を実際の現場で活用する方にぜひ手に取っていただきたい一冊です。


    【章構成】
    第1章 モデルの説明可能性と解釈可能性
    第2章 AIの倫理、偏見、信頼性
    第3章 線形モデルの説明可能性
    第4章 非線形モデルの説明可能性
    第5章 アンサンブルモデルの説明可能性
    第6章 時系列モデルの説明可能性
    第7章 自然言語処理の説明可能性
    第8章 What-Ifシナリオを使ったモデルの公平性
    第9章 ディープラーニングモデルの説明可能性
    第10章 XAIモデルの反実仮想説明
    第11章 機械学習での対比的説明
    第12章 予測不変性の特定によるモデル不可知の説明
    第13章 ルールベースのエキスパートシステムでのモデルの説明可能性
    第14章 コンピュータビジョンでのモデルの説明可能性

    ◎Pythonの文法・ライブラリや機械学習について
    標準的な知識を理解している必要があります。

  • 目次

    表紙
    口絵
    本扉
    サンプルコード・正誤表・Copyright
    献辞
    著者紹介/テクニカルレビュー担当者紹介
    謝辞
    まえがき
    目次
    第1章 モデルの説明可能性と解釈可能性/1.1 フレームワークの確立
    1.2 AI
    1.2.1 XAIの必要性
    1.2.2 説明可能性と解釈可能性
    1.2.3 説明(解釈)可能性の種類
    1.2.4 モデルの説明可能性のためのツール/1.2.5 SHAP
    1.2.6 LIME
    1.2.7 ELI5
    1.2.8 Skater
    1.2.9 skope-rules
    1.2.10 機械学習のためのXAIの手法
    1.2.11 XAI互換のモデル
    1.2.12 XAIと責任あるAI
    1.2.13 XAIの評価
    1.3 まとめ
    第2章 AIの倫理、偏見、信頼性/2.1 速習:AIの倫理
    2.2 AIの偏見/2.3 データのバイアス
    2.4 アルゴリズムのバイアス
    2.5 バイアスを減らすプロセス/2.6 解釈のバイアス/2.7 訓練のバイアス
    2.8 AIの信頼性
    2.9 まとめ
    第3章 線形モデルの説明可能性/3.1 線形モデル/3.2 線形回帰
    3.3 発生する可能性がある問題とVIF
    3.3.1 最終的なモデル
    3.3.2 モデルの説明可能性/3.4 機械学習モデルへの信頼:SHAP
    3.4.1 機械学習モデルでの局所的な説明と個々の予測値
    3.4.2 機械学習モデルでの大域的な説明と全体的な予測値
    3.5 LIMEによる説明と機械学習モデル
    3.6 Skaterによる説明と機械学習モデル
    3.7 ELI5による説明と機械学習モデル
    3.8 ロジスティック回帰
    3.8.1 解釈/3.8.2 LIMEの推論
    3.9 まとめ
    第4章 非線形モデルの説明可能性/4.1 非線形モデル
    4.2 決定木の説明
    4.3 決定木モデルのデータを準備する
    4.3.1 決定木モデルを作成する
    4.4 決定木:SHAP
    4.5 SHAPを使ったPDP
    4.6 scikit-learnを使ったPDP
    4.7 非線形モデルの説明:LIME
    4.8 非線形モデルの説明:skope-rules
    4.9 まとめ
    第5章 アンサンブルモデルの説明可能性/5.1 アンサンブルモデル
    5.1.1 アンサンブルモデルの種類/5.2 アンサンブルモデルを使うのはなぜか
    5.3 アンサンブルモデルでSHAPを使う
    5.4 InterpretMLを使ってブースティングモデルを説明する
    5.5 アンサンブル分類モデル:SHAP
    5.6 SHAPを使ってCatBoostモデルを説明する
    5.7 SHAPを使ってCatBoostベースの多クラス分類モデルを説明する
    5.8 SHAPを使ってLightGBMモデルを説明する
    5.9 まとめ
    第6章 時系列モデルの説明可能性/6.1 時系列モデル
    6.2 どのモデルが適切かを知る/6.2.1 予測のための戦略
    6.2.2 予測の信頼区間/6.3 信頼はどうなる?
    6.4 時系列モデル:LIME
    6.5 まとめ
    第7章 自然言語処理の説明可能性/7.1 自然言語処理のタスク
    7.2 テキスト分類の説明可能性
    7.3 テキスト分類用のデータセット
    7.4 ELI5を使って説明する
    7.5 局所的な説明に対する特徴量の重みを計算する/7.5.1 局所的な説明:例1
    7.5.2 局所的な説明:例2
    7.5.3 ストップワードを取り除いた後の説明
    7.6 n-gramベースのテキスト分類
    7.7 複数ラベルの多クラステキスト分類の説明可能性
    7.7.1 局所的な説明:例1
    7.7.2 局所的な説明:例2
    7.7.3 局所的な説明:例3
    7.8 まとめ
    第8章 What-Ifシナリオを使ったモデルの公平性/8.1 WITとは何か
    8.2 WITのインストールと活用
    8.2.1 評価指標/8.3 まとめ
    第9章 ディープラーニングモデルの説明可能性/9.1 ディープラーニングモデルを説明する
    9.2 ディープラーニングでSHAPを使う
    9.2.1 Deep SHAPを使う/9.2.2 画像分類でSHAP DeepExplainerを使う:例1
    9.2.3 画像分類でSHAP DeepExplainerを使う:例2
    9.2.4 表形式データでSHAP DeepExplainerを使う
    9.3 まとめ
    第10章 XAIモデルの反実仮想説明/10.1 反実仮想説明とは何か/10.2 反実仮想説明を実装する
    10.3 Alibiを使った反実仮想説明
    10.4 回帰タスクでの反実仮想説明
    10.5 まとめ
    第11章 機械学習での対比的説明/11.1 機械学習での対比的説明とは何か
    11.2 Alibiを使ったモデルの対比的説明
    11.2.1 元の画像とオートエンコーダが生成した画像を比較する
    11.2.2 表形式データでのCEM
    11.3 まとめ
    第12章 予測不変性の特定によるモデル不可知の説明/12.1 モデル不可知とは何か/12.2 アンカーとは何か
    12.3 Alibiを使ったアンカー説明
    12.4 テキスト分類でAnchorTextを使う
    12.5 画像分類でAnchorImageを使う
    12.6 まとめ
    第13章 ルールベースのエキスパートシステムでのモデルの説明可能性/13.1 エキスパートシステムとは何か
    13.1.1 前向き連鎖と後ろ向き連鎖
    13.2 scikit-learnを使ったルール抽出
    13.3 ルールベースのシステムが必要な理由
    13.4 エキスパートシステムの課題/13.5 まとめ
    第14章 コンピュータビジョンでのモデルの説明可能性/14.1 画像データでの説明可能性
    14.1.1 コンピュータビジョンでアンカー画像を使う/14.2 勾配積分法
    14.3 まとめ
    索引
    訳者紹介
    奥付

実践XAI(説明可能なAI) 機械学習の予測を説明するためのPythonコーディング(インプレス) の商品スペック

発行年月日 2023/06/20
Cコード 3055
出版社名 インプレス
本文検索
他のインプレスの電子書籍を探す
紙の本のISBN-13 9784295016557
ファイルサイズ 263.4MB
著者名 Pradeepta Mishra
株式会社クイープ
著述名

    インプレス 実践XAI(説明可能なAI) 機械学習の予測を説明するためのPythonコーディング(インプレス) [電子書籍] に関するレビューとQ&A

    商品に関するご意見やご感想、購入者への質問をお待ちしています!